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Amazon biomass maps
and data base

The quantification of carbon stored in 
forests at large scale still carries high 
uncertainty

Tejada et al (2019), 
C. Management

Page 6 of 18Tejada et al. Carbon Balance Manage           (2019) 14:11 

Fig. 2 Distribution of forest inventory plots in the Brazilian Amazon. a RadamBrasil [41]; b Amazon Forest Inventory Network (RAINFOR) [75]; c 
National Forest Inventory [26]; d sustainable landscapes project [27]; e National Institute of Amazon Research (INPA) (personal communication); f 
Tropical Ecosystems and Environmental Sciences Laboratory (TREES) [30]; g Tropical Ecology, Assessment and Monitoring Network (TEAM) [42]; and 
h Research Program for Biodiversity (PPBio) [45]
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975 LiDAR transects
Width: 300m
Length: 12,5Km
Area: 375ha

192 flown twice (Arc/Degradation)
91 directed to field plots
405 field plots

Randomly distributed:
- PRODES forest (INPE)
- TERRACLASS Secondary 

vegetation (INPE) and 
- Wetlands – (Hess et al. 2015)

LiDAR

RADAM



Field data



Lidar Transects 
AGB Lidar

 (Longo et al. 2016)

Remote Sensing data 250m

EVI, NDVI – Modis; SRTM; 
TRMM; X, Y; PALSAR – HH, 

HV

Random forest Regression 
Model (148.013 cell)

R2=0.7485 
RMSE = 54.36 Mg/ha

Extrapolation

AGB MAP

Ground data

LiDAR

AGB Map
Project 
EBA/MSA

The model was 
fitting using 
approximately 
148013 cells 
with 250 meter 
of spatial 
resolution 
representing 
the mean value 
of AGB and 
remote sensing 
variable. 



Aboveground Carbon - total

AGB estimate - CHM

ADC = Abovegorund carbon density
TCH = Top canopy height 
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Figure 3. Scatterplots of estimated aboveground carbon density based on airborne lidar metrics using the subset
selection of regression (ACDALS) as a function of forest inventory ACD (ACDFI). Color and shapes correspond to (a)
different study sites and (b) different disturbance histories. In both cases the point with the gray shade corresponds to
the plot with the largest ACD according to the inventory and the largest absolute residual. The total number of plots, the
root-mean-square error (kg C m−2), and the adjusted coefficient of determination are shown in the top left of Figure 3a.

were typically the ones with subsampling and with many trees with DBH just under 35 cm or plots with at
least one very large tree (DBH>125 cm). For example, the shaded point in Figure 3 is the plot with the high-
est residual for all methods and also the highest estimated ACDFI (39.4 kg C m−2). A significant fraction of the
total (21.9 kg C m−2) came from a single individual of species Dinizia excelsa Ducke, an emergent tree, with
DBH =200.0 cm, Ht = 63.8 m, and 𝜌w = 0.905 g cm−3. In contrast, the overestimation of ACDALS for plots with
low ACDFI was mostly associated with plots with low mean wood density (not shown).

Figure 4. (a) Kernel density estimate of aboveground carbon density (ACD) for all 50 × 50 m pixels from all study areas, separated by disturbance history,
excluding those pixels with last disturbance occurring more than 10 years prior to airborne lidar acquisition. Intact forests are areas within the study sites or at
nearby sites with no signs of disturbance based on Landsat-derived NDVI and NBR chronosequences between 1984 and 2013. Uncertainty of ACD estimates was
incorporated to the curves (see Text S3). (b) Average aboveground carbon density (ACD) of areas that were logged or burned, relative to average ACD of
reference (intact) forests. Point shapes correspond to disturbance history, and colors represent the age since last disturbance. Ellipses are the 95% confidence
interval of the median value, based on 10,000 replications adding random noise proportional to each pixel uncertainty.
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• Construction of a Geodatabase: PostgreSQL

à Automate the biomass calculation and the generation of 

the biomass map 

LiDAR data process

--> LiDAR metrics are automatically generated for 

each new transect delivered by the ALS flight company 

- Script

Geodatabase



AGB, Uncertainty, Median height Maps



Positive values à EBA > RADAM_3inv
Negative values -->  EBA < RADAM_3inv

Biomass estimatioin on preterit vegetation
è 75 percentil of the natural, non distubance classes, based on a vegetation map



National Communication to the Climate Convention 
and as support for the Forest Reference Level (FREL)
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Biomass uncertainty map. The uncertainty map is provided in TIF format, projected using EPSG 4326. 
The information is offered in Mg ha−1 (Fig. 4). The biomass map is deposited in the Zenodo repository37.

Technical Validation
The distribution of transects captured the most representative vegetation types in the Amazon. The Open (in 
Brazilian classification: Floresta Ombrófila Aberta) and Dense Forests (in Brazilian classification: Floresta 
Ombrófila Densa), representing 27.23% and 54.29% of the Amazon received 30.82% and 49.08% of the tran-
sects. The seasonal forest (in Brazilian classification: Floresta Estacional Semidecidual) (5,16%) and open savan-
nah (in Brazilian classification: Campinarana, 5.08%) received, respectively 7.46% and 5.17% of all transects 
(Table 2). The number of transects flown in different Brazilian Amazonia states (in alphabetical order) are as 
follow: (20) Acre; (25) Amapá; (286) Amazonas; (24) Maranhão; (127) Mato Grosso; (301) Pará; (71) Rondônia; 
(46) Roraima; (1) Tocantins.

A total of 156 field plots were used to validate the Above-Ground Biomass (AGB) estimated by the 
LiDAR-based model. The field biomass was computed through inventories of trees, palms, and lianas’ biomass 
within each plot. The estimated AGB of the plot (kg m−2) was obtained by dividing the total biomass of individ-
uals within the plot (kg) by the area of the plot (m²). The individual AGB allometric equation for live trees was 
from38, for live palms from39, and for live lianas from40. The data was processed and delivered by the research 
partners. The models were constructed to estimate AGB kg, based on diameter of breast height (1.3 m - DBH) in 
cm, total height (Ht) in meters; and wood density in g cm−3 (ρ). The wood density value was established by tree 
species, genera, or family, based on41.

To validate the AGB estimated from LiDAR-based model, we cropped the LiDAR point cloud to the same 
extent of each field plot and estimated the above ground biomass. All the field plots were geo-located using 
the Differential Global Positioning System (DGPS), allowing accurate correspondence to the LiDAR point 
cloud data. The field AGB and LiDAR AGB have statistically similar mean values (~28 kg m−2) (Fig. 5). The 
Wilcoxon-Mann-Whitney test indicates that field AGB and LiDAR AGB are statistically similar (Wilcoxon rank 
sum test data W = 11141, p-value = 0.5917).

This effort aims to provide the largest database on LiDAR information of the Amazon Forest and a biomass 
map to inform decision makers (e.g., National commitments, funding mechanisms such as REDD+, and forest 
conservation strategies) with the most accurate information regarding the carbon content of the above ground 
vegetation in this region. Considering the implications of this information to several initiatives, we compared 

Fig. 6 Comparison with the 3rd Brazilian National Communication. Negative values (red) indicate lower values 
to 3rd National Communication. Positive values (blue) indicate higher values to the new estimations.



 Chapter 2: Generic Methodologies Applicable to Multiple Land-Use Categories 

2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories 2.19 

particular, it would also include changes within forests remaining forests such as degradation and regrowth, 
management and harvest, and natural disturbances. Such analysis requires consistent and well-calibrated 
biomass density maps using ground and remotely sensed data to accurately estimate biomass changes; a 
quality requirement that has so far not been achieved for the NGHGIs at this stage. Improvements in both the 
field estimates of biomass change and remote sensing technologies and analysis in the coming years can lead 
to such approaches becoming more efficient and accurate for NGHGI purposes. 

3. Biomass density maps can be integrated with remote sensing-assisted, time-series of land change and/or with 
Tier 3 models to localize emissions estimates. This way the biomass map data can be linked to land and carbon 
evolution over time that better reflect the complexity of forest-related carbon fluxes. Critical for this type of 
application is the consistency among the various data sources and models concerning definitions (forest, 
biomass pools), and, spatial and temporal data characteristics. Map unit uncertainties in biomass maps 
propagate to larger area estimates and can lead to substantial uncertainties in national emissions estimation if 
not properly considered.  

The application of such approaches requires maps well-calibrated for national circumstances. Many available 
large-area biomass maps, such as global biomass maps, might not be consistent with national definitions of forest 
and/or biomass pools, and often exhibit large systematic errors in the estimation of carbon stock and changes for 
national and local assessments (Avitabile et al., 2016). Since countries may have national products, including 
biomass maps, large-area biomass maps can be useful for the purpose of independent comparison and verification. 
Depending on how a map is produced and how it is used to enhance NGHGIs, additional metadata on the applied 
models and procedures used to produce the map, such as for example the covariance matrix of model parameters 
of a model that was used to generate the map (see Volume 1, Chapter 6, section 6.1.4.2), may be required for 
characterization and reporting of uncertainty in a fully compliant way, particularly for application to country-
specific circumstances. 

BOX 2.0E (NEW) 
USING A BIOMASS MAP FOR GHG ESTIMATION: AN EXAMPLE FROM THE BRAZILIAN AMAZON  

Brazil is applying a methodology for estimating forest biomass combining data from airborne 
LiDAR, satellite remote sensing and forest inventories. The aim for using the biomass map for the 
NGHGI is to provide coverage over the whole Amazon where the availability and quality of ground 
data varies. Deforestation and associated land use change in the Amazon are heterogeneous and 
patchy. Related estimates of carbon emissions carry some level of uncertainty unless this spatial 
variability in both types of change and biomass variability is captured.  

The methodology to estimate the biomass was based on 1,000 LiDAR transects randomly distributed 
across 3.5 million km2 of the Amazon forests. Aboveground biomass is estimated at three different 
levels. At field plot level (first level), the data are used to validate the biomass estimated by LiDAR 
(second level) by adopting and using the models and data provided by Chave et al 2014 and Longo 
et al 2016. A total of 407 field plots were used for this validation. At the third level the biomass was 
estimated by extrapolating the biomass to the Brazilian Amazon Biome by the use of MODIS 
vegetation index, Shuttle Radar Topography Mission data, precipitation data from the Tropical 
Rainfall Measuring Mission and Synthetic Aperture Radar data of the Phased Array type L-band 
Synthetic Aperture Radar, soil and vegetation maps. A nonparametric regression method (Random 
Forest) is used for correlating the above ground biomass within the LiDAR transects to a list of 
variables, and then used for the extrapolation of the biomass to the region. The coefficient of 
determination and the root mean squared error between the third level extrapolated biomass data and 
the LiDAR data were R2=0.7485 and RMSE=27.18 MgCha-1, respectively. In this process, the 
SRTM elevation data were the most important variable for the biomass extrapolation process, 
followed by the TRMM precipitation data and Enhanced Vegetation Index data. The estimated 
biomass map uncertainty is calculated by propagating the uncertainties through the different levels 
of biomass estimation, i.e., field plots, LiDAR and satellite (Longo et al 2016). This process allows 
us to obtain total uncertainty estimates for each pixel in the final biomass map. 
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SIXTH ASSESSMENT REPORT
Working Group II – Impacts, Adaptation and Vulnerability

• Over 420 million ha of forest 
were lost to deforestation 
from 1990 to 2020; more 
than 90% of that loss 
took place in tropical 
areas, threatening 
biodiversity, environmental 
services, livelihoods of forest 
communities, and resilience 
to climate shocks (IPCC 
WG2, CCP7, 2022).

TROPICAL FORESTS

CCP7
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Cross-Chapter Paper 7 Tropical Forests

Tropical ecological zones as defined by the FAO

Tropical dry forests
Tropical shrubland

Tropical desert
Tropical mountain system

Tropical rain forests
Tropical moist forests

Areas classified as “Forest”
in the 2020 ESA Land Cover CCI Product
are overlaid in grey.

Figure CCP7.2 |  Colours represent tropical ecological zones as defined by the FAO (FAO, 2012). Areas classified as ‘forest’ in the 2020 ESA Land Cover CCI Product 
(ESA, 2017) are overlaid in grey.

Table CCP7.1 |  Areas in tropical ecological zones as defined by the FAO (FAO, 2012). 1Existing forest represents areas classified as ‘forest’ in the 2020 ESA Land Cover CCI Product 
(ESA, 2017). All units are in million hectares, except where indicated.

Ecological zone Africa South 
America

North 
America Asia Australia Oceania Global Existing 

forest1

Existing 
forest (%)1

Tropical rainforest 399 659 48 323 3 13 1459 1140 78.2

Tropical moist forest 464 428 43 139 0 0 1077 509 47.3

Tropical dry forest 366 167 39 143 67 0 784 236 30.0

Tropical shrubland 595 11 0 116 85 0 808 60 7.4

Tropical desert 871 13 0 269 141 0 1296 6 0.4

Tropical mountain system 147 188 16 90 0 2 443 194 43.9

75% of taxa extinction found in Earth’s ‘big five’ mass extinction events 
(Barnosky et al., 2011; Díaz et al., 2019; Davison et al., 2021). Even 
though species–area relationships tend to overestimate extinction 
rates (He and Hubbell, 2011), there is evidence that species richness 
in tropical forests is alarmingly approaching or surpassing the taxa 
extinction value in this period (45% for dung beetles, 51% for lizards, 
65% for ants, and 80% for mammals) should deforestation and habitat 
loss continue at the current pace (Alroy, 2017; Ceballos et al., 2017). 
Moreover, there is reasonable understanding that these numbers are 
underestimated and, as such, tropical forest loss and degradation 
alone will precipitate a sixth mass extinction event (Giam, 2017). A 
total of 13 out of the 25 global biodiversity hotspots for conservation 
are located in tropical forests, such as Brazil’s Atlantic Forest and 
India’s Western Ghats/Sri Lanka (Myers et al., 2000). While forest loss 
and degradation have been the main cause of tropical biodiversity loss 
in the past, climate change now arises as a major threat not only for 
individual tropical forest species or taxa—as already observed for frogs 

(Pounds et al., 2006)—but for whole communities (Esquivel-Muelbert 
et al., 2019), and even entire tropical forest ecoregions (Lapola et al., 
2018).

CCP7.2.2 Rates of Deforestation, Tropical Reforestation 
and Connections to Climate Resilience of 
Tropical Forests

More than 420 million ha of forest were lost globally in the 1990–
2020 period because of deforestation, and more than 90% of that loss 
took place in tropical areas (FAO, 2020). For the 2015–2020 period, 
the tropical deforestation rate decreased compared with 2010–2015, 
being estimated at 10.2 Mha yr−1 (FAO, 2020). But reforestation and 
afforestation rates have also decreased, resulting in a tropical forests 
net loss rate of 7.3 Mha yr−1 in the 2015–2020 period. Overall, the net 
loss rate has slightly decreased (−4%) since 1990 (high confidence). 

Climate change affects tropical forests through warming and increased 
occurrence of extreme events such as droughts and heatwaves, as well as more 
frequent fires, which increase tree mortality and reduce tree growth, 
limiting the ability of forests to regenerate and reducing their biodiversity. 




